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A Quasi-TEM Analysis for Curved and Straight
Planar Multiconductor Systems

HEINRICH DIESTEL

Abstract —In this paper an extended quasi-TEM analysis is presented.
The transverse field of the weakly curved planar multiconductor system is
described by the static electric and magnetic solutions of the corresponding
axially symmetrical structure. The capacitance and inductance matrices of
this system of concentric microstrip rings are calculated using the “method
of lines.” A two-port network consisting of circularly curved transmission
lines is calculated and the results are compared with measured values.

I. INTRODUCTION

T LOW FREQUENCIES the dimensions of planar
A transmission lines, e.g. for delay lines and direc-
tional couplers, represent a serious problem. In many cases
the lines are curved, in order to satisfy the small-size
requirements of the system packaging, and the radii of
curvature are chosen large to keep losses as small as
possible. Because of the long wavelengths the electromag-
netic field is extremely extended, so that all parts of the
circuit are coupled and parasitic effects can become domi-
nant.

A rigorous analysis of such networks with straight and
curved planar multiconductor systems has not yet been
given. Since waveguide curvature represents a rather in-
volved mathematical problem, analytical methods are
available for only a few simple curved structures [1], [2].

Most of the procedures concerned with curvature make
certain simplifying assumptions, e.g. that the curved seg-
ment of waveguide may be considered part of an infinite
circular spiral [3]. This approximation has been applied
successfully to the groove [4] and to the dielectric wave-
guide [5] and has been adopted for the present analysis.

The fundamental modes of straight planar multiconduc-
tor systems are pure TEM only for the case of lossless strip
lines in a homogeneous dielectric. If the dielectric is lay-
ered the guided waves are hybrid; i.e., longitudinal field
components also exist. In the theory of quasi-TEM modes
these components, which are small at low frequencies, are
neglected and the transverse field is approximated by a
composition of static electric and static magnetic fields.

If curvature is introduced to the multiconductor system
(Fig. 1), the dominant structure of the electromagnetic
field does not change abruptly. For moderate curvature the
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Fig. 1. Top and cross-sectional views of a planar multiconductor sys-

tem with sections of straight and circularly curved coupled transmis-
sion lines

main field components are furthermore perpendicular to
the curved axis; i.e., the propagating modes are basically of
the TEM kind [5], [6].

In the present paper the transmission properties of cir-
cularly curved multiconductor systems are described by
currents and voltages, as in the case of straight guides [7].
The propagation constants result from the solution of a
real eigenvalue problem with static capacitance and induc-
tance matrices. In the limiting case of zero frequency, the
transverse electromagnetic field of the section of curved
lines approximately coincides with the static electric and
magnetic solutions of the corresponding axially symmetri-
cal structure. The two static field problems of the system
of concentric ring lines are solved accurately and in a
uniform manner in this paper.

If curvature is reduced, the curved system of guides
converges to the corresponding straight one. The method
presented here can follow this process of reduction steadily,
including the transition to straight conductors. It is there-
fore also possible to correctly consider very weak curva-
ture, which cannot be achieved by methods with funda-
mentally different expansion functions for curved and
straight guides.

II. ANALYSIS

In the quasi-TEM analysis the transverse electromag-
netic field is described by a combination of static electric
and magnetic fields.

From Maxwell’s equations the following relations for
the electrostatic field of the axially symmetrical structure

0018-9480,/89 /0400-0748$01.00 ©1989 IEEE



DIESTEL: QUASI-TEM ANALYSIS 749
magn. (el/) cylinder el. wall potential line A A
H b P
% m H
' i e
z |
_’l Py Ltte . h; ( I,8ﬂ> 0, : I
{ h N
0 | : . !lll;
W~ #V v » 7 ©v 7 7 p v & 4 # 7
-#, l[ 2 s v v v 2 2] vy v 7w @D l l
n e, i 3]
-H, C> apliy 9pl;
p—>
— 4
0 R R

Fig. 2. Cross-sectional view of concentric microstrip rings at different interfaces. The inner and outer radi of the total
multiconductor system are given by R, and R,. In detail A the lines of discretization for the potential function § = ¢*(*")
and its first derivative are sketched; e, and h, denote interval sizes (e, = h, = h for equidistant discretization) and p, is the
radial distance to the 1th potential line. Near the strip edges the intervals are equal in size and have the small value 4, = A,

result:

v X E(p,z)=0 v(e¢E)=0(p,z2) (1)

where o(p, z) gives the surface charge density. Equations
(1) represent a two-dimensional potential problem with a
scalar potential function ¢%(p,z), which must satisfy
Laplace’s differential equation in the cylindrical (p, &, 2)
coordinate system:

32¢E 32(PE 1 aq)E
+ — =
9z° a*> o Ip

Dirichlet’s condition holds for shielding electric walls, and
at p =0 Neumann’s condition

a E
»
dp

0. (2)

(3)

must be considered.

In the following this boundary value problem is solved
in the same manner and hence with the same accuracy as
the boundary value problem for the static magnetic field,
which from Maxwell’s equations is defined by

V(,uoﬁ) =0 (4)

with the electrical current density f= Jj(p, z)€,. The mag-
netic field strength. H can be derived from a solenoidal
vector potential, A = ¢¥(p, z)€,, which is a solution of the
partial differential equation

%" ol 1
LA A S/ Y (5)
az? ap* p dp P

At a sufficient distance on the shielding electric walls the
potential function is given by

¢"=0. (6)

This boundary condition is also valid on the metallized
ground plane and is generated in certain methods by
mirror currents. In contrast to the electrostatic problem,

v Xﬁ(p,z)=j—’

1 d¢f

where (3) holds at p = 0, the magnetic vector potential on
the coordinate axis is determined by (6). This can be
deduced from the behavior of the potential function in the
limit p — 0 if circular filamentary currents are assumed [8].

The static electric and magnetic field problems are solved
in the following using the semianalytical “method of lines”
[9]-[13]. For this purpose a simple transformation of the
two potential functions is performed:

SE(H) —

9 e/P@

where p denotes a mean radius, defined below.
After transformation the partial differential equations
for the scalar and vector potential functions take the form

E(H)

(™)

2=FE(H 2—E(H E(H

3 %" )_lr(?(P( )+c ( )(iE(”)=0
i 22 9 p2 p2

with the constants ¢Z=1/4 and ¢’ =—-3/4.

At the interfaces of the dielectric regions in Fig. 2 are
striplines of zero thickness. Because of the field singulari-
ties at the strip edges the p dependence of the potential
functions is very complicated, so that an analytical solu-
tion with Bessel and trigonometric expansion functions
becomes extremely cumbersome.

The semianalytical method of lines bypasses the difficul-
ties caused by the strip edges. In the p direction, where
field singularities occur, a discrete description of the func-
tions is chosen, whereas in the z direction the fields are
expressed analytically.

On the axis p =0 the derivatives of the transformed
potential function $* exhibit singular behavior. The z axis
is therefore excluded for both potential functions, and on a
cylindrical wall with a small radius p, (Fig. 2) we have
boundary conditions which are derived from (3) and (6).
All other ideal boundaries uniformly require Dirichlet’s
condition £(H) =0

The potential functions are discretized in order to solve
the partial differential equations (8) using the method of
lines. A good first approximation for an optimal discretiza-

(8)
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tion is given in [12] for straight waveguides and this
discretization is well suited also for circularly curved
striplines (cf. [13]).

After two simple intermediate transformations, called
normalization, one obtains the following systems of M
coupled ordinary differential equations:

2

dz
€

with the normalized potentials 55(,” ) =[re]“1$£()” ). The
diagonal matrix [r,]=diag(yh/e,) is a function of the
interval sizes e, and # (Fig. 2, detail), and the vector

E(H) E(H)
=gy _ | P Pr

(p — LTt =
Jp/p1 V0P
depends on the potentials in the original domain:
—, t
T = (or ™ (2), -, i (2))".

The diagonal matrix [r]= diag(\/ﬁ/_pl ) has a particular
meaning. Since the curvature of a circle is equal to the
reciprocal radius, the ith element of [r]? denotes the
normalized curvature of the waveguide at the ith line. The
radial distances to the lines of discretization are given by
[p] = diag (p,)-

In principle the mean radius p can be chosen arbitrarily.
In what follows p is given by the value (R, + R ,)/2 where
R, and R, are the radial distances of the outer strip edges.
as illustrated in Fig. 2.

Because of different lateral boundary conditions for the
two potential functions, denoted by E and H, we have
different second-order operators

(o200 = =[] [ 0]

By orthogonal transformation the systems of M coupled
differential equations (9) can be decoupled, and one ob-
tains

= [/ (10)

2

%17””’ = [xEm/m] VED =G (11)
dz

with the vectors of transformed potentials VEHE (7) =

[T(m)) @5 and the real, positive, and distinct eigenval-

ues x”)/h. The general solutions of (11) correspond to

the simple transmission line equations.

In the following the problem of two dielectric layers
with striplines at the interface is treated in order to make a
comparison with [12] (Fig. 2, H,= H,).

As mentioned above, the tangential electric field must
vanish at the coordinate planes z = <i)H1(2). Continuity
conditions must be considered at z = 0, so that the normal-
ized electrostatic potential is related to the charge at the
interface as follows:

®F(0) = [T;]diag(1/¢,)[T;)'Q, = [Ts]0, (12)
with

/€= xf(e,l COth(ijHl/h> + e,zcoth(foz/h)) (13)
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Fig. 3. The ring widths w; to w, are subdivided into microrings of the
radial widths e,. (a) The microcapacitances &, = (¢, ), s are summed
to the macrocapacitances C,,, =(C,,,),'s for the N circular striplines.
(b) For the same structure as in (a) the microinductances /,, = (/,;);*s
are summed to the macroinductances L,,, = (L,,,),"s.

and the normalized vector of charge,

Q.= [rll14.. (14)
The subscript s refers to differentiation with respect to the
variable s = pa.

In (12) only those elements of the matrix [I'z] belonging
to striplines are evaluated. These elements can be given
explicitly and form the real and symmetric “reduced”
matrix in the normalized domain [12].

After transformation into the original domain and inver-
sion of the matrix, the following equation is derived:

(@) ea= ([T 10r]) g B0 = [ ). (15)

The elements dc,, /ds of the real and symmetric matrix {c,]
represent microcapacitances with respect to the length
ds = pda. As illustrated in Fig. 3(a), the capacitances ¢,,,
defined by é,=—c,, if i#k, and &,=XX_.c,, form a
dense network with microrings of widths e,.

The macrocapacitances for the circular striplines of
widths w, result from the summation of the corresponding
microcapacitances; one obtains

g=[¢lu (16)
with the charges per unit length ¢’ = (qs®,- R q@)’ and

the potentials ¥ = (u@,- <o, u) for the N planar con-
ductors.

The static electric and the static magnetic fields repre-
sent independent solutions of Maxwell’s equations. With
the present method both field-theoretical problems can be
solved accurately and in a uniform manner.

The continuity of the transformed magnetic potential
VJH(Z) at the interface follows from the continuity of the
normal magnetic induction. The magnetic flux at z =0 is
related to the vector potential by the equation

6,(0) =[r.]"[r]5,= 8"(0) (17)
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where 5; gives the vector of normalized magnetic flux with
respect to the length ds.

Matching of the tangential magnetic field strength then
leads to the equation

6,(0) = [T, ] diag(1,)[7,/)'T= [Ty T
with the elements of the diagonal matrix

lj/,uo=1/(xf’(coth(xf’H1/h)+cothy(xf'H2/h))) (19)
which correspond to the Hankel transform of Green’s
function in spectral-domain analysis.

The normalized vector of current I'is derived from the
surface current density k(z) as follows:

I'=h[r,]7'[r]"k(0). (20)

After transformation the reduced system of equations (18)
takes the following form in the original domain:

(8, = (T RN 7Y e = [ (21)

The elements dl, /ds of the real, symmetric matrix [/ ]
represent microinductances with respect to ds. In the same
manner as the microcapacitances, these form a dense net-
work, illustrated in Fig. 3(b) for the same structure as in
Fig. 3(a).

Because of the perfect conductivity the normal compo-
nent of induction vanishes on the strips at z=0. As a
consequence the vector potential must satisfy a homoge-
neous differential equation there, with the general solution

©"(0) = (p/p)P, where ¢ denotes the amplitude. For the
dlscretlzed functions one obtains from (17) the relation
(19 )rea = - The magnetic flux with respect to ds on the
strips can be arbitrary and is chosen to be unity, i.e., p =1.

After inversion of (21), summation of the inverse mi-
croinductances, and inversion of the resultant matrix, the
following final equation for the macro- or stripline induc-
tances is obtained:

(18)

F=[L]i
with the flux per unit length & = (8D, -,

(22)
ﬂs@)’ and the

corresponding currents i=( O ®)’ on the N circular
conductors.

In some methods the outer inductances are calculated
using the inductance integral [8]. The self-inductances then
represent improper integrals, which, for striplines with zero
thickness, cause numerical problems. This difficulty does
not exist if the inductances are calculated, as the capaci-
tances are, from a partial differential equation.

In the present method a uniform solution of the static
field problems is possible by means of two simple interme-
diate transformations, called normalization. The vectors of
the original domain, e.g. ¢%, §7, &, g, are then transformed
into the vectors of the “normalized” domain, characterized
by capital letters, i.e., B%, &% §, 0.

In the limit p — co the curved transmission lines con-
verge to the straight conductor system and if the magn.
(el) cylinder (Fig. 2) is replaced by an electric one with
sufficiently large radius p, we have the relation

. -1
Jim 1, /o = (c2/e0)
€,,=1.

(23)

with the 0 denoting ¢, =
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- w = 0,15mm
i ¢ = 0.07mm
€,=¢,-10
Hy = 1.27mm
A = 50mm

- ®
Fig. 4. The surface current density k(p) and the charge density A(p) of

a system of N =4 circular mucrostrip rings (u /L70=5’=T), where
w,=w (n== wN) and 1, =t (n=2.3,4); ¢, =¢,=1; and y, =
1/ o€ - The markmgs on the abscissa give the locat1ons of the
potential lines and the conducting rings (D) to (4) are indicated by
large line widths. The density distributions are given for (a) R, =
5.0 mm and (b) R, =1.5 mm.

In the original domain the following relation holds:

Tim [L,1/0=[L)/mo= (IG5)/e0) ™ (24)
where [C{] gives the capacitance matrix in vacuum and
[L’] the inductance matrix of the straight planar multicon-
ductor system, treated in [12], [14].

As mentioned in the preceding section, the transmission
properties of the curved multiconductor system are de-
scribed by currents and voltages.

The two basic equations for the quasi-TEM analysis are

derived from (16) and (22):

—i=—jw u —U=—jw i

as' T as' T I

where i and @ give the vectors of transmission line cur-
rents and voltages, respectively.

After differentiation with respect to s and substitution
one obtains second-order differential equations for i and
#. The elements of # are coupled by the real but not
symmetric matrix [L)[C].
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Fig. 5. Calculated (measured) S parameters of the two-port sketched in the figure: ———— (¥) for the phase and ®)

for the magnitude. Port 2 refers to the inner end of the spiral structure

Decoupling is achieved by a real transformation [15],
which results in the following matrix equation:

(26)

with the vector of transformed voltages ( s)=[T,] ‘i(s)
and the real eigenvalues [x] = diag(x ).

A comparison of (11) with (26) reveals the relationship
between the method of lines for determining the transverse
fields and the conventional technique for calculating the
wave propagation.

With [15] one obtains the matrix equation for the cur-
rents and voltages at the beginning and at the end of a
circularly curved multiconductor system:

i_)(sll)
7(%)

=Yo<[cs]/eo>[ru][913%75—[1131}[@]‘1[”7(“‘“)} (27)

ﬁ(sb)

where s, denote the two planes of the 2 N-port network,

Yo=1/Zy=\ex /o, and [y} = [yo], [112] = [y2] are di-
agonal matrices.

III. RESULTS

The multiconductor system of Fig. 1 is composed of
straight and circularly curved transmission lines. For large
radii R, and at low frequencies we have only a small
distortion of the electromagnetic field due to curvature;
Le., the field is approximately TEM. The static distribu-
tions of the charge and the current density for &~ 4 are
then approximately proportional. R

The charge density A(p), which is derived from A =
[#]7%, and the surface current density k(p) of a system
of four circular striplines in a homogeneous dielectric

(e, =¢€,, =1) are depicted in Fig. 4(a). The inner radius of
curvature 1s given by R, = 5.0 mm.

In the limiting case of straight lines, i.e., for R, = o0, the
two sets of curves coincide and the fields are pure TEM at
all frequencies. In that case we have exactly d/dsu® =
— jwd® and d/dsi® = — jogq®, where u® and /@ de-
note unique line integrals for the nth stripline.

If the dielectric is layered, this uniqueness is lost and the
quantity “current” or “voltage” has to be defined differ-
ently [15]. A graphical representation corresponding to
Fig. 4 of the surface current density and the charge density
for R,=w and ¢,,>1 would show two different sets of
curves, which are not simply proportional.

Hence from the static distributions we can deduce that
an inhomogeneous dielectric and curvature both lead away
from TEM.

For the same system of conductors as in Fig. 4(a) but
with a smaller inner radius of curvature R, =1.5 mm, the
charge density and the surface current density are depicted
in Fig. 4(b). With an increase of curvature the two distri-
butions A(p)Z, and k(p)p, become increasingly differ-
ent, so that the largest difference is given for strip (1), as
can also be deduced from (8).

The capacitance and the inductance matrices of the
aforementioned four-conductor system with the geometri-
cal parameters w = 0.15 mm, ¢ = 0.07 mm, H,=1.27 mm,
R,=1.5 mm, and ¢,,=9.8 are given in the Appendix. As
can be seen the outer diagonal elements of the real and
symmetric matrices are different. In the limiting case of
straight conductors they are equal.

The number of lines for the spacings ¢ has been taken to
be M, . =35, so that after considering the edge condition
[12], [13], four lines describe the static fields of the spac-
ings. The matrices [C,] and [ L] have been calculated using
M =93 lines.

For the shielding electrical walls the distances H, =
10-H, and p= R, +5(R,— R,) have proved to be suffi-
ciently large. Doubling these distances changes the ele-
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ments of the matrices (Al) and (A2) (see the Appendlx) by
less than 0.5 percent.

If the number of lines M, for the smallest distance,

e., for 7, is increased from M, =3 to M,,=7 the
capacitances and inductances change by less than 0.5
percent.

To show the effect of curvature in a quasi-TEM analysis,
two curved multiconductor systems with four and three
striplines are joined together. They form a two-port net-
work similar to a circular spiral inductor. The structural
data of the four-conductor system are w =0.145 mm,
t=0.075 mm, H,=127 mm, €,, =9.8, R/=1.5 mm, and
a, = 7. The same angle is given for the adjacent three-con-
ductor system with the larger inner radius RIT=(QRI+
w+1t)/2. ‘

The S parameters of this structure, which is assumed
lossless, are plotted versus frequency in Fig. 5. With in-
creasing frequency the neglect of the radial component of
the surface current and the diverse losses lead to an
increasing discrepancy between the calculated and the
measured results, especially for the magnitudes.

Since the measured values of |S,,| differ only slightly
from the measured |S;;|, they are not shown in the figure.
The difference in the phase angles arc(S;;) and arc(.S,;)
corresponds to the difference of the outer capacitances in
an equivalent circuit with discrete elements.

In the measurement setup the DUT, sketched in Fig. 5,
is connected to intervening transmission lines by bond
wires. These bond wires were examined individually and
taken into account using a correction program.

IV. CONCLUSIONS

A quasi-TEM analysis for straight and weakly curved
planar multiconductor transmission lines is presented. To
' show the accuracy of the approach, a two-port network
similar to a spiral inductor has been calculated and mea-
sured. ' '

The method of approximation is suited for analysis of
microwave components as well as high-speed digital cir-
cuits with interconnections consisting of curved striplines
instead of straight lines with discontinuities.

APPENDIX
Capacitance Matrix:
11.189 —6.028 —1.117 —0.647
—-6.028 16.106 —6.278 —1.254 | _ [C.]/e :
—-1.117 -—-6.278 18.085 —7.599 $ 0
—0.647  —-1.254 —7.599 15.800
(A1)
Inductance Matrix:
0470 0275 0.203 0.161
0.275 0.534 0.316 0.235
0203 0316 0607 0363 | [Ls1/bo- (A2)
0.161 0.235 0.363 0.691
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