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A Quasi-TEM Analysis for Curved and Straight
Planar Multiconductor Systems

HEINRICH DIESTEL

Abstract —In this paper an extended quasi-TEM analysis is preseuted.

The transverse field of the weakfy curved planar multiconductor system is

deseribed by the static electric and magnetic solutions of the corresponding

axially symmetrical structure. The capacitance and inductance matrices of

this system of concentric microstrip rings are calculated using the “method

of lines.” A two-port network consisting of circularly curved transmission

lines is calculated and the results are compared with measured values.

I. INTRODUCTION

A T LOW FREQUENCIES the dimensions of planar

transmission lines, e.g. for delay lines and direc-

tional couplers, represent a serious problem. In many cases

the lines are curved, in order to satisfy the small-size

requirements of the system packaging, and the radii of

curvature are chosen large to keep losses as small as

possible. Because of the long wavelengths the electromag-

netic field is extremely extended, so that all parts of the

circuit are coupled and parasitic effects can become domi-

nant.

A rigorous analysis of such networks with straight and

curved planar multiconductor systems has not yet been

given. Since waveguide curvature represents a rather in-

volved mathematical problem, analytical methods are

available for only a few simple curved structures [1], [2].

Most of the procedures concerned with curvature make

certain simplifying assumptions, e.g. that the curved seg-

ment of waveguide may be considered part of an infinite

circular spiral [3]. This approximation has been applied

successfully to the groove [4] and to the dielectric wave-
guide [5] and has been adopted for the present analysis.

The fundamental modes of straight planar multiconduc-

tor systems are pure TEM only for the case of lossless strip

lines in a homogeneous dielectric. If the dielectric is lay-

ered the guided waves are hybrid; i.e., longitudinal field

components also exist. In the theory of quasi-TEM modes

these components, which are small at low frequencies, are

neglected and the transverse field is approximated by a

composition of static electric and static magnetic fields.

If curvature is introduced to the multiconductor system

(Fig. 1), the dominant structure of the electromagnetic

field does not change abruptly. For moderate curvature the
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Fig. 1. Top and cross-sectiomd views of a planar multiconductor sys-

tem with sections of straight and circularly curved coupled transmis-
sion lines

main field components are furthermore perpendicular to

the curved axis; i.e., the propagating modes are basically of

the TEM kind [5], [6].

In the present paper the transmission properties of cir-

cularly curved multiconductor systems are described by

currents and voltages, as in the case of straight guides [7].

The propagation constants result from the solution of a

real eigenvalue problem with static capacitance and induc-

tance matrices. In the limiting case of zero frequency, the

transverse electromagnetic field of the section of curved

lines approximately coincides with the static electric and

magnetic solutions of the corresponding axially symmetri-

cal structure. The two static field problems of the system

of concentric ring lines are solved accurately and in a

uniform manner in this paper.

If curvature is reduced, the curved system of guides

converges to the corresponding straight one. The method

presented here can follow this process of reduction steadily,

including the transition to straight conductors. It is there-

fore also possible to correctly consider very weak curva-

ture, which cannot be achieved by methods with funda-

mentally different expansion functions for curved and

straight guides.

II. ANALYSIS

In the quasi-TEM analysis the transverse electromag-

netic field is described by a combination of static electric

and magnetic fields.

From Maxwell’s equations the following relations for

the electrostatic field of the axially symmetrical structure
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Fig. 2. Cross-sectional view of concentric microstrip rings at different interfaces. The inner and outer radii of the totaJ

multiconductor system are given by R, and R.. In detail A the lines of discretization for the potential function T = @(~;)
and its first derivative are sketched; e, and h, denote interval sizes (e, = h, = h for equidistant discretization) and P, is the
radial distance to the zth potential line. Near the strip edges the intervals are equal in size and have the small value k, = h..

result:

Vxi(p, z)=o V(GF) =O(p, z) (1)

where U( p, z) gives the surface charge density. Equations

(1) represent a two-dimensional potential problem with a

scalar potential function rp~( p, z), which must satisfy

Laplace’s differential equation in the cylindrical (p, a, 2)

coordinate system:

a2qE a2qE I aTE
—+–—

dzz + 8P2
=0. (2)

p ap

Dirichlet’s condition holds for shielding electric walls, and

at p = O Neumann’s condition

a@
—=0
ap

(3)

must be considered.

In the following this boundary value problem is solved

in the same manner and hence with the same accuracy as

the boundary value problem for the static magnetic field,

which from Maxwell’s equations is defined by

v Xfi(p,z) =J7 V(poi)=o (4)

with the electrical cur~ent density J?= j( p, z) Z.. The mag-

netic field strengt~. H can be derived from a solenoidal

vector potential, A = q~( p, z) Z., which is a solution of the

partial differential equation

6’%pH r?2qH1 8@ 1
HZ().— . —. .

i3z2 + ap2 ‘~ ap P2T

(5)

At a sufficient distance on the shielding electric walls the

potential function is given by

@= (). (6)

This boundary condition is also valid on the metallized

ground plane and is generated in certain methods by

mirror currents. In contrast to the electrostatic problem,

where (3) holds at p = O, the magnetic vector potential on

the coordinate axis is determined by (6). This can be

deduced from the behavior of the potential function in the

limit p -+ CI if circular filamentary currents are assumed [8].

The static electric and magnetic field problems are solved

in the following using the semianalytical “method of lines”

[9]-[13]. For this purpose a simple transformation of the

two potential functions is performed:

ip~) = ~pW) (7)

where ~ denotes a mean radius, defined below.

After transformation the partial differential equations

for the scalar and vector potential functions take the form

,3 Z@E(H) a2@~(H) #(H)
-— –E(H) = ()

az2 ‘R dpz + p2 q

(8)

with the constants c E = 1/4 and CH = - 3/4.

At the interfaces of the dielectric regions in Fig. 2 are

striplines of zero thickness. Because of the field singulari-

ties at the strip edges the p dependence of the potential

functions is very complicated, so that an analytical solu-

tion with Bessel and trigonometric expansion functions

becomes extremely cumbersome.

The semi analytical method of lines bypasses the difficul-

ties caused by the strip edges. In the p direction, where

field singularities occur, a discrete description of the func-

tions is chosen, whereas in the z direction the fields are

expressed analytically.
On the axis p = O the derivatives of the transformed

‘~ exhibit singular behavior. The z axispotential function rp

is therefore excluded for both potential functions, and on a

cylindrical wall witlh a small radius PO (Fig. 2) we have

boundary conditions which are derived from (3) and (6).

All other ideal boundaries uniformly require Dirichlet’s

condition @‘) = O

The potential functions are discretized in order to solve

the partial different ial equations (8) using the method of

lines. A good first approximation for an optimal discretiza-
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tion is given in [12] for straight waveguides and this

discretization is well suited also for circularly curved

striplines (cf. [13]).

After two simple intermediate transformations, called

normalization, one obtains the following systems of M

coupled ordinary differential equations:

~s m 1_fc@w+2-~Mm~~(~)+c~(~)[p]-z~~(~)=~&2
(9)

with the normalized potentials ~(~~~) = [r.]- l~~~~). The

diagonal matrix [r.] = diag(~) is a function of the

interval sizes e, and h (Fig. 2, detail), and the vector

(
E(H) z

=,(H) = @H)... _
v

m’ ‘ ;k I=[r] -’jj-~ (10)

depends on the potentials in the original domain:

7:(?)= (9:( H)(Z),” . .,rfti~)(z))’.

The diagonal matrix [r] = diag(fi) has a particular

meaning. Since the curvature of a circle is equal to the

reciprocal radius, the i th element of [r] 2 denotes the

normalized curvature of the waveguide at the i th line. The

radial distances to the lines of discretization are given by

[PI = diag (P,)
In principle the mean radius ~ can be chosen arbitrarily.

In what follows ~ is given by the value (R, + R ~)\2 where

l?, and R ~ are the radial distances of the outer strip edges,

as illustrated in Fig. 2.

Because of different lateral boundary conditions for the

two potential functions, denoted by E and H, we have

different second-order operators

[%7*)1‘-[%W[WT
By orthogonal transformation the systems of M coupled

differential equations (9) can be decoupled, and one ob-

tains

g p~(w – [xW),h]’@(w =6 (11)

with the vectors of transformed potentials ~~( ‘)(z) =

f +‘( ~) and the real, positive, and distinct eigenval-[TE(H)] ‘(z)

‘(‘)/h. The general solutions of (11) correspond toues Xl

the simple transmission line equations.

In the following the problem of two dielectric layers

with striplines at the interface is treated in order to make a

comparison with [12] (Fig. 2, H3 = Hz).

As mentioned above, the tangential electric field must

vanish at the coordinate planes z = ( f )HI(2). Continuity

conditions must be considered at z = O, so that the normal-

ized electrostatic potential is related to the charge at the

interface as follows:

~E(0) = [TE]diag (l/c, )[TE]t@, = [l’E]@, (12)

with

cJ/~o = x, ‘(c,lcd(x; f@ + c,2cOth(x:&/~)) (13)

?K
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Fig. 3. The ring widths WI to w~ are subdivided into micronngs of the

radial widths e,. (a) The mjcrocap~citances ?,~ = ( 2,A),. s are summed
to the macrocapacitances Cm, = ( Cm,,,). ~s for the N circular striplines.
(b) For the same structure as in (a) the microinductances I,k = (llA ). ~s
are summed to the macroinductances Lmti = ( Ln,l ),.s.

and the normalized vector of charge,

!z=[dm. (14)

The subscript s refers to differentiation with respect to the

variable s = ~ LT.

In (12) only those elements of the matrix [rE] belonging

to striplines are evaluated. These elements can be given

explicitly and form the real and symmetric “reduced”

matrix in the normalized domain [12].

After transformation into the original domain and inver-

sion of the matrix, the following equation is derived:

(?,),.,= ([r][re][rE][re] [r]);;@:d= [csliti. (15)
The elements dc,~ /ds of the real and symmetric matrix [ c,]

represent microcapacitances with respect to the length

ds = ~ da. As illustrated in Fig. 3(a), the capacitances t?,~,

defined by ~,~ = – c,~, if i + k, and P,, = X~=lc,~, form a
dense network with microrings of widths e,.

The macrocapacitances for the circular striplines of

widths w. result from the summation of the corresponding

microcapacitances; one obtains

7’=[c$l~ (16)

with the charges per unit leng~h ~ = (q,@, -.., q,@) t and

‘)’ for the N planar con-the potentials 7= (u@,. . . . u

ductors.

The static electric and the static magnetic fields repre-

sent independent solutions of Maxwell’s equations. With

the present method both field-theoretical problems can be

solved accurately and in a uniform manner.
The continuity of the transformed magnetic potential

~~(z ) at the interface follows from the continuity of the

normal magnetic induction. The magnetic flux at z = O is

related to the vector potential by the equation

(17)
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where ~ gives the vector of norma~zed magnetic flux with

respect to the length ds.

Matching of the tangential magnetic field strength then

leads to the equation

Z(O) = [T~]diag(l,)[T’] ’~= [r~]~ (18)

with the elements of the diagonal matrix

z,/Po=V(x:(co+@,/~) +coth,(x;W~))) (19)
which correspond to the Hankel transform of Green’s

function in spectral-domain analysis.

The normalized vector of current ~ is derived from the

surface current density Z(z) as follows:

F=h[re]-:[r] -’i(o). (20)

After transformation the reduced system of equations (18)

takes the following form in the original domain:

(i)re~= (l~l-’I~,l[rHII~elIrl-l) re~~e~= [z,l;e~. (al)

The elements dl,k/ds of the real, symmetric matrix [1,]

represent microinductances with respect to ds. In the same

manner as the microcapacitances, these form a dense net-

work, illustrated in Fig. 3(b) for the same structure as in

Fig. 3(a).

Because of the perfect conductivity the normal compo-

nent of induction vanishes on the strips at z = O. As a

consequence the vector potential must satisfy a homoge-

neous differential equation there, with the general solution

q~(0) = (~/p)@, where @ denotes the amplitude. For the

d~cretize~ functions one obtains from (17) the relation

(8,) ,.. = $. The magnetic flux with respect to ds o~ t~e

strips can be arbitrary and is chosen to be unity, i.e., @=1.

After inversion of (21), summation of the inverse rni-

croinductances, and inversion of the resultant matrix, the

following final equation for the macro- or stripline induc-

tances is obtained:
J= [~,]: (22)

with the flux per unit length ~ = (@, c.0, O~@)~ and the

corresponding currents ~= (i@,. 0., i@) f on the N circular

conductors.

In some methods the outer inductances are calculated

using the inductance integral [8]. The self-inductances then

represent improper integrals, which, for striplines with zero

thickness, cause numerical problems. This difficulty does

not exist if the inductances are calculated, as the capaci-

tances are, from a partial differential equation.

In the present method a uniform solution of the static

field problems is possible by means of two simple interme-

diate transformations, called normalization. The vectors of

the original domain, e.g. FE, @~, ~, ~, are then transformed

into the vectors of the” normal~e~’ domain, characterized

‘E, ~H, O,Q.by capital letters, i.e., @

In the limit ,6 ~ m the curved transmission lines con-
verge to the straight conductor system and if the magn.

(eI.) cylinder (Fig. 2) is replaced by an electric one with

sufficiently large radius POwe have the relation

with the O denoting C,l = C,2 =1.

(23)
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Fig. 4. The surface current density k(p) and the charge densi~ l(p) of

a system of N = 4 circular mlcrostnp rings ( ii/zIO = @ = 1), where
~n=~! (n==l,. ... N) and t,n=t ()!=2,3,4); C,2=C,I=1; and UO=

1/.=. The markings on the abscissa give the locations of the

potential lines and the conducting rings @ to @) are indicated by

large line widths. The density distributions are given for (a) R, =
5.0 mm and (b) R, =1.5 mm.

In the original domain the following relation holds:

lim [L1/IJo=[~’]/Po=([Gj’]/Eo)-l (24)
~+w

where [ C( ] gives the capacitance matrix in vacuum and

[L’] the inductance matrix of the straight planar multicon-

ductor system, treated in [12], [14].

As mentioned in the preceding section, the transmission

properties of the curved multiconductor system are de-

scribed by currents and voltages.

The two basic equations for the quasi-TEM analysis are

derived from (16) and (22):

where ~ and ii give the vectors of transmission line cur-

rents and voltages, respectively.

After differentiation with respect to s and substitution

one obtains second-order differential equations for z>and

ii. The elements of ii are coupled by the real but not

symmetric matrix [L,][C,].
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Flg. 5. Calculated (measured) S parameters of the two-port sketched in the figure: –––- (~) for the phase and — (e)

for the magnitude, Port 2 refers to the inner end of the spiral structure

Decoupling is achieved by a real transformation [15],

which results in the following matrix equation:

(26)

with the vector of transformed voltages ~(,s) = [TU] - 12(s)

and the real eigenvalues [x] = diag (x,).

A comparison of (11) with (26) reveals the relationship

between the method of lines for determining the transverse

fields and the conventional technique for calculating the

wave propagation.

With [15] one obtains the matrix equation for the cur-

rents and voltages at the beginning and at the end of a

circularly curved multiconductor system:

:(sa)

7(Sb )I
[M::1-1%11 ’27)=Yo([c,b’q))[q] -----!- --- [Tu]

where sa(~) denote the two planes of the 2N-port network,

YO=l/ZO = ~~o, and [yll] = [y22], [ylz] = [yzl] are di-

agonal matrices.

III. RESULTS

The multiconductor system of Fig. 1 is composed of

straight and circularly curved transmission lines. For large

radii R, and at low frequencies we have only a small

distortion of the electromagnetic field due to curvature;

i.e., the field is approximately TEM. The static distribu-

tions of the charge and the current density for Z- @ are

then approximately proportional.

The charge density A(p), which is derived from ~ =

[r] ‘2~ and the surface current density k(p) of a system

of four circular striplines in a homogeneous dielectric

(crl = C,2 = 1) are depicted in Fig. 4(a). The inner radius of
curvature is given by R, = 5.0 mm.

In the limiting case of straight lines, i.e., for R, = m, the

two sets of curves coincide and the fields are pure TEM at

all frequencies. In that case we have exactly d/ds z@ =
— jw3,@ and d/ds i@ = – juq,@, where u@ and i@ de-

note unique line integrals for the n th stripline.

If the dielectric is layered, this uniqueness is lost and the

quantity “current” or “ voltage” has to be defined differ-

ently [15]. A graphical representation corresponding to

Fig. 4 of the surface current density and the charge density

for R, = co and C,2 >1 would show two different sets of

curves, which are not simply proportional.

Hence from the static distributions we can deduce that

an inhomogeneous dielectric and curvature both lead away

from TEM.

For the same system of conductors as in Fig. 4(a) but

with a smaller inner radius of curvature R, = 1.5 mm, the

charge density and the surface current density are depicted

in Fig. 4(b). With an increase of curvature the two distri-

butions A(p) ZO and k(p)pO become increasingly differ-

ent, so that the largest difference is given for strip @, as

can also be deduced from (8).

The capacitance and the inductance matrices of the

aforementioned four-conductor system with the geometri-

cal parameters w = 0.15 mm, t= 0.07 mm, Hz = 1.27 mm,

R, =1.5 mm, and C,2= 9.8 are given in the Appendix. As

can be seen the outer diagonal elements of the real and

symmetric matrices are different. In the limiting case of

straight conductors they are equal.

The number of lines for the spacings t has been taken to

be A4~,. = 5, so that after considering the edge condition

[12], [13], four lines describe the static fields of the spac-

ings. The matrices [C,] and [L, ] have been calculated using

M = 93 lines.

For the shielding electrical walls the distances HI=

10. H2 and p = R. + 5(R. – R,) have proved to be suffi-

ciently large. Doubling these distances changes the ele-
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ments of the matrices (Al

less than 0.5 percent.

If the number of lines
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Tci show the effect of curvature in a quasi-TEM analysis,

two curved multiconductor systems with four and three

striplines are joined together. They form a two-port net-

work similar to a circular spiral inductor. The structural

data of the four-conductor system are w = 0.145 mm,

t= 0.075 mm, Hz =1.27 mm, C,2 = 9.8, R~=l.5 mm, and

aO = ~. The same angle is given for the adjacent three-con-

ductor system with the larger inner radius R;= (2Rf +

w + t)/2.

The S parameters of this structure, which is assumed

lossless, are plotted versus frequency in Fig. 5. With in-

creasing frequency the neglect of the radial component of

the surface current and the diverse losses lead to an

increasing discrepancy between the calculated and the

measured results, especially for the magnitudes.

Since the measured values of [Szzl differ only slightly

from the measured ISIII, they are not shown in the figure.

The difference in the phase angles arc (Sll) and arc (S22)

corresponds to the difference of the outer capacitances in

an equivalent circuit with discrete elements.

In the measurement setup the DUT, sketched in Fig. 5,

is. connected to intervening transmission lines by bond

wires. These bond wires were examined individually and

taken into account using a correction program.

IV. CONCLUSIONS

A quasi-TEM analysis for straight and weakly curved

planar multiconductor transmission lines is presented. To

show the accuracy of the approach, a two-port network

similar to a spiral inductor has been calculated and mea-

sured.

The method of approximation is suited for analysis of

microwave components as well as high-speed digital cir-

cuits with interconnections consisting of. curved striplines

instead of straight lines with discontinultles.

APPENDIX

Capacitance Matrix:

1

11.189 – 6.028 –1.117 –0.647
– 6.028 16.106 –6.278 – 1.254

1
= [c,]/co.–1.11’7 –6.278 18.085 –7.599

1-0.647 -1.254

Inductance Matrix:

[

0.470 0.275

0.275 0.534
0.203 0.316
0.161 0.235

–7.599 15.8001

0.203 0.161

0.316 0.235
0.607 0.363

1

= [L,]/pO.

0.363 0.691

(Al)

(A2)
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